Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device

Identifieur interne : 002021 ( Main/Repository ); précédent : 002020; suivant : 002022

Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device

Auteurs : RBID : Pascal:13-0051832

Descripteurs français

English descriptors

Abstract

Semiconductor InSb nanowires are expected to provide an I excellent material platform for the study of Majorana fermions in solid state systems. Here, we report on the realization of a Nb-InSb nanowire- Nb hybrid quantum device and the observation of a zero-bias conductance peak structure in the device. An InSb nanowire quantum dot is formed in the device between the two Nb contacts. Due to the proximity effect, the InSb nanowire segments covered by the superconductor Nb contacts turn to superconductors with a superconducting energy gap ΔInSb ∼ 0.25 meV. A tunable critical supercurrent is observed in the device in high back gate voltage regions in which the Fermi level in the InSb nanowire is located above the tunneling barriers of the quantum dot and the device is open to conduction. When a perpendicular magnetic field is applied to the devices, the critical supercurrent is seen to decrease as the magnetic field increases. However, at sufficiently low back gate voltages, the device shows the quasi-particle Coulomb blockade characteristics and the supercurrent is strongly suppressed even at zero magnetic field. This transport characteristic changes when a perpendicular magnetic field stronger than a critical value, at which the Zeeman energy in the InSb nanowire is Ez ∼ ΔInSb, is applied to the device. In this case, the transport measurements show a conductance peak at the zero bias voltage and the entire InSb nanowire in the device behaves as in a topological superconductor phase. We also show that this zero-bias conductance peak structure can persist over a large range of applied magnetic fields and could be interpreted as a transport signature of Majorana fermions in the InSb nanowire.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0051832

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device</title>
<author>
<name sortKey="Deng, M T" uniqKey="Deng M">M. T. Deng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, C L" uniqKey="Yu C">C. L. Yu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, G Y" uniqKey="Huang G">G. Y. Huang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Larsson, M" uniqKey="Larsson M">M. Larsson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Caroff, P" uniqKey="Caroff P">P. Caroff</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>I.E.M.N., UMR CNRS 8520, Avenue Poincaré, BP 60069</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, H Q" uniqKey="Xu H">H. Q. Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0051832</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0051832 INIST</idno>
<idno type="RBID">Pascal:13-0051832</idno>
<idno type="wicri:Area/Main/Corpus">001348</idno>
<idno type="wicri:Area/Main/Repository">002021</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bias voltage</term>
<term>Calcium selenides</term>
<term>Coulomb blockade</term>
<term>Critical value</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Fermi level</term>
<term>Gallium tellurides</term>
<term>Gates</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium antimonides</term>
<term>Nanostructured materials</term>
<term>Nanowire device</term>
<term>Nanowires</term>
<term>Proximity effect</term>
<term>Quantum dot</term>
<term>Superconducting materials</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Dispositif nanofil</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Point quantique</term>
<term>Effet proximité</term>
<term>Bande interdite</term>
<term>Electrode commande</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Effet tunnel</term>
<term>Blocage Coulomb</term>
<term>Valeur critique</term>
<term>Antimoniure d'indium</term>
<term>Supraconducteur</term>
<term>Tellurure de gallium</term>
<term>Séléniure de calcium</term>
<term>Tension polarisation</term>
<term>InSb</term>
<term>CaSe</term>
<term>8535K</term>
<term>8107V</term>
<term>8107B</term>
<term>8107T</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Semiconductor InSb nanowires are expected to provide an I excellent material platform for the study of Majorana fermions in solid state systems. Here, we report on the realization of a Nb-InSb nanowire- Nb hybrid quantum device and the observation of a zero-bias conductance peak structure in the device. An InSb nanowire quantum dot is formed in the device between the two Nb contacts. Due to the proximity effect, the InSb nanowire segments covered by the superconductor Nb contacts turn to superconductors with a superconducting energy gap Δ
<sub>InSb</sub>
∼ 0.25 meV. A tunable critical supercurrent is observed in the device in high back gate voltage regions in which the Fermi level in the InSb nanowire is located above the tunneling barriers of the quantum dot and the device is open to conduction. When a perpendicular magnetic field is applied to the devices, the critical supercurrent is seen to decrease as the magnetic field increases. However, at sufficiently low back gate voltages, the device shows the quasi-particle Coulomb blockade characteristics and the supercurrent is strongly suppressed even at zero magnetic field. This transport characteristic changes when a perpendicular magnetic field stronger than a critical value, at which the Zeeman energy in the InSb nanowire is E
<sub>z</sub>
∼ Δ
<sub>InSb</sub>
, is applied to the device. In this case, the transport measurements show a conductance peak at the zero bias voltage and the entire InSb nanowire in the device behaves as in a topological superconductor phase. We also show that this zero-bias conductance peak structure can persist over a large range of applied magnetic fields and could be interpreted as a transport signature of Majorana fermions in the InSb nanowire.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DENG (M. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YU (C. L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HUANG (G. Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LARSSON (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CAROFF (P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XU (H. Q.)</s1>
</fA11>
<fA14 i1="01">
<s1>Division of Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>I.E.M.N., UMR CNRS 8520, Avenue Poincaré, BP 60069</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>6414-6419</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000505494360610</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0051832</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Semiconductor InSb nanowires are expected to provide an I excellent material platform for the study of Majorana fermions in solid state systems. Here, we report on the realization of a Nb-InSb nanowire- Nb hybrid quantum device and the observation of a zero-bias conductance peak structure in the device. An InSb nanowire quantum dot is formed in the device between the two Nb contacts. Due to the proximity effect, the InSb nanowire segments covered by the superconductor Nb contacts turn to superconductors with a superconducting energy gap Δ
<sub>InSb</sub>
∼ 0.25 meV. A tunable critical supercurrent is observed in the device in high back gate voltage regions in which the Fermi level in the InSb nanowire is located above the tunneling barriers of the quantum dot and the device is open to conduction. When a perpendicular magnetic field is applied to the devices, the critical supercurrent is seen to decrease as the magnetic field increases. However, at sufficiently low back gate voltages, the device shows the quasi-particle Coulomb blockade characteristics and the supercurrent is strongly suppressed even at zero magnetic field. This transport characteristic changes when a perpendicular magnetic field stronger than a critical value, at which the Zeeman energy in the InSb nanowire is E
<sub>z</sub>
∼ Δ
<sub>InSb</sub>
, is applied to the device. In this case, the transport measurements show a conductance peak at the zero bias voltage and the entire InSb nanowire in the device behaves as in a topological superconductor phase. We also show that this zero-bias conductance peak structure can persist over a large range of applied magnetic fields and could be interpreted as a transport signature of Majorana fermions in the InSb nanowire.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dispositif nanofil</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanowire device</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Dispositivo nanohilo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Effet proximité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Proximity effect</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Efecto proximidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Electrode commande</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gates</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Niveau Fermi</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Fermi level</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Nivel Fermi</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Effet tunnel</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Tunnel effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Efecto túnel</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Blocage Coulomb</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Coulomb blockade</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Bloqueo Coulomb</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Valeur critique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Critical value</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Valor crítico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Supraconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Superconducting materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Supraconductor</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Tellurure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium tellurides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de calcium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Calcium selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Tension polarisation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Bias voltage</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Voltage polarización</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>InSb</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>CaSe</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>8535K</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>035</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0051832
   |texte=   Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024